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Analysis of stress distribution in a thin rectangular plate
by the method of caustics

J. WANG, R.C. BATRA (BLACKSBURG) and K.ISOGIMI (TSU)

WE piscuss some characteristics of caustics in a rectangular plate loaded by distributed in-plane
loads on a part of two opposite edges with the other two edges kept traction-free. It is assumed that
plane state of stress prevails in the plate. The theoretical developments are valid for an arbitrary
location of the reflective plane within the plate. A good agreement is found between the computed
and observed caustics. A simple inverse problem of determining the intensity of the distributed
load from the size of caustics is also investigated.

1. Introduction

THE METHOD of caustics was first proposed by MANOGG [1] and has been employed
by THEOCARIS [2, 3] and KALTHOFF [4] to ascertain stresses at singular points.
The method is widely used in fracture mechanics to determine stress intensity
factors under Modes I, 1I and III loading [5]. Here we apply this method to
another kind of singular problem, namely, distributed load acting on a part of
the width of a plate; this is a simplified model of loads acting on a cutting tool.
The deformations and stresses will be singular at points where the distributed
load jumps from zero to a finite value or vice-versa. Here we consider a thin
plate subjected to in-plane distributed loads at two opposite edges with the other
two edges traction-free and assume that a plane stress state prevails in the plate.
We use the method of caustics to transform the stress singularity to an optical
singularity and determine the stress distribution at singular points. It is assumed
that the intensity of the distributed load is such that the linear elasticity theory
can be used to describe deformations of the plate. The work is motivated by
the desire to ascertain stresses induced in a cutting tool; however no machining
problem is studied herein.

2. Analytical developments of caustics

Referring to Fig. 1, consider parallel rays impinging upon the plane surface
of a transparent, homogeneous, and both mechanically and optically isotropic
rectangular plate subjected to in-plane distributed loads on two opposite edges.
The direction of the light reflected from a point on the incident surface will
depend upon its deformations. This light when projected on a screen, will form
caustics whose patterns will depend upon the state of stress at points on the
incident surface. If the location of the plane from which the incident light is
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reflected can be varied, then the state of stress at points within the body can also
be ascertained by the method of caustics.
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FiG. 1. A schematic sketch of the problem studied.

2.1. Optical path difference

We assume that the distributed load on the edge of a plate can be approxi-
mated by a series of step loads as shown in Fig.2. Herein we assume the dis-
tributed load to be such that points on the central plane of the plate do not move
laterally. Also with the plate divided into several layers with thickness of each
layer equaling the thickness of the edge over which the load intensity is constant,
we presume that a plane state of stress exists within each layer. Let the plate
be divided into n layers of thicknesses d;.d....,dy and in-plane loads acting
on their edges equal Pyo, Pyo, ..., Pya, respectively. Under the action of these
loads, the thickness d; and refractive index n,; of the i-th layer (1 < ¢ < N) will
change by Ad; and An;, respectively. We designate by subscripts ¢ and m the
central surface of the plate and the plane from which light is reflected.

A lateral displacement of a material point in the direction of increasing op-
tical path is taken as positive. Thus under a compressive edge load, the lateral
displacement of the front surface of the plate is —Ady and that of the rear sur-
face equals + Ad,. Of course, as assumed above, the lateral displacement of the
central surface is zero.

As shown in Fig. 2, we consider a reflective plane located at a distance of kd
(0 < k < 1) from the front surface of the plate. Measuring distances from the
deformed position of the front surface, the optical path 5, to the reflective plane
in the unstressed reference configuration is given by

(2.1) S1 = 2(Ady + nkd),
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Fi1G. 2. a) Load distribution along the thickness of the plate; b) load distribution along the width
of the plate.

where n is the refractive index of the plate material in the unstressed state and
the refractive index of air equals 1. After the load is applied, the optical path will

change to S, given by

m—1
(22) S =2 (n+ An)(di + Ad;)
=1
1 m—1
+(n + _\nm)a hd — ; d; | {dwm + Ady) | .
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In writing equation (2.2) we have assumed that the reflective plane (or mirror)
is located in the m-th layer. Subtracting (2.1) from (2.2) and neglecting terms of
second order in Ad and/or An, we obtain the following formula for the optical
path difference

m—1
Z (Anid; + nAd;)

1=1

23) A§=2

(TiL i=1

m—1
n
+ (;\nm + l—;ldm> (kd - Z (l,’) — Ady

The variation in the thickness of the i-th layer subjected to in-plane edge loads
P,o can be expressed as

(2.4) Ad; = —%P,d.;(nl + o)),

where E and v equal, respectively, Young’s modulus and Poisson’s ratio for the
material of the plate, and o7 and o, are the principal stresses induced at a point
in the plate layer subjected to in-plane surface traction o (recall that the third
principal stress is zero because of the assumption of plane stress). Since the
central plane is assumed not to move laterally, therefore, the displacement Ad
of the front surface is given by

7 . d
(2.5) Ady = %z [g Pd; — P, (; d; — 5)} (o1 + 07),

where it has been assumed that the central plane lies in the c-th layer. For an
optically isotropic i-th layer, the change in the refractive index at a point is
given by

(2.6) An; = AP;j(o + 07),

where A is the optical constant for the plate material. Substitution from (2.4),
(2.5) and (2.6) into (2.3) results in the following expression for AS:

(2.7) AS = K(oy + 02),

where

m—1 m
. vV 5 14
(28) K =2 { (A — TIE) 1-=E 1 P:d; + (/.‘(1. — E (l,’) (‘4] = ”PmE)

=1

7 : d
G Pd; — P. d; — = .
P ra-n(ge-3)])
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2.2. Equation of caustics

Referring to Fig. 1, let R’ be the image of I? on a plane screen located at a
distance Z, from R when there is no load applied to the plate, and R” be the
image of R when the plate has been deformed by in-plane loads applied at the

_—

two opposite edges. The vector w = R'R" is given by [6]
(2.9) w= Z grad AS = K'Z, grad (o) + 03)

where we have used (2.7).

Let the stress state at an arbitrary point in the plate with two opposite edges
subjected to uniform in-plane tractions o be described by the complex-valued
function ¢(z) of the complex variable = = z + iy. Then

(2.10) 4Re (6(2)) = 0y + 02,

where Re (¢(z)) denotes the real part of ¢. In the complex variable notation,
Eq. (2.9) becomes

(2.11) w=4K 2,8 (2),

where ¢ denotes the complex conjugate of ¢. Assuming that the origin O of
the rectangular Cartesian coordinate system is located on the top surface of the
undeformed plate and the applied tractions are distributed symmetrically about

it, O is its image on the screen and r = O R, then

(2.12) W=0R'"=w+r.

However, when the incident light is not a parallel beam but a convergent beam,
then Eq.(2.12) is modified to

(2.13) W=w+ Ar,
where
(2.14) A= (4 - Z.)]7;,

and Z; is the distance of the focal point of the light from the reflective plane (cf.
Fig.3). Of course, for a parallel incident beam, A = 1.
In the complex plane, Eqs.(2.11) and (2.13) yield

(2.15) W=2a"+iy =Mz +iy)+ 4]\'2,@,(:)
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FiG. 3. A schematic sketch of the convergent light beam and illustrations of distances Z; and Z,.

and the condition

_ o',y _
(2.16) J I ) 0

for the existence of a singular point becomes

(2.17)

4
T/\'z,.o"(;)l -1

Thus the caustic curve is obtained from Egs. (2.17) and (2.15).
For the load distribution depicted in Fig. 2, Eq.(2.17) gives

(2.18) AB = darC /A,
where

A=+ a® = 2ar cosb,
(2.19) B = r* + a* + 2ar cosé,
C=20N2Z./r,

(r,0) are the cylindrical polar coordinates of the point (r, y) (e.g. see Fig.2), and
2a is the width of the loaded region. Equation (2.15) describing a caustic curve
can be written as

2 = Ar (cosH - %sin 20) .
2.20
( ) 1a?

) - 1
g = Ar (sm()— EcosE()— Er_z) .
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We identify the size of a caustic curve with the maximum horizontal distance, D =
Lmax, between any two points on the curve. For the load applied symmetrically
about O, it is reasonable to assume that the caustic curve is symmetrical about
O'. Thus if points (ry, 6p) and (rg, —6p) on the caustic curve determine D, then

(2.21) D = Lpax = bryg,
where
(2.22) b=2\ (cos()g — %sin 290) .

Equations (2.18) and (2.21) give the following relation between the applied uni-
form traction ¢ and the size of a caustic.

X D[/iD b \?
(223) ag = 8]\7}'7 . [— l(g + B{lz) _ 4([2 (3082 90} .
/= )

Knowing D, nonlinear equations (2.18) and (2.21) can be solved iteratively for
ro and #y, and then o can be evaluated from Eq. (2.23). Subsequently, the stress
distribution at any point in the plate can be ascertained.

3. Experimental method

A schematic sketch of the experimental set-up is shown in Fig.4. All of the
components depicted in the figure, except for the video monitor and recording
equipment, are mounted on a vibration-isolated table. A laser light from the

lens 1 lens 2 half-mirror
expander -
He-Ne laser s rd incident
over-ray cutter light  specimen

_‘ = | CCD camera

monitor  video-tape recorder

F1G. 4. A layout of the experimental apparatus.
source is expanded by the expander, changed into collimated light by lens 1 and

into a convergent beam by lens 2. The region of interest with singular stress
distribution in the object is illuminated with the laser light through a half-mirror.
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Light falling from the object and the half-mirror is received by a CCD camera,
recorded on a video-tape and monitored. The dimension ratio A, defined by
Eq.(2.14), of the convergent light is determined and adjusted by altering the
positions of lens 2, the half-mirror and the CCD camera.

The specimen length, width and thickness equal, respectively, 63 mm, 45 mm
and 6 mm and it is made of transparent acrylate. The reflective surface of the
specimen is formed by vapor depositing a layer of aluminum film on either the
front or the rear surface of the plate.
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I'1G. 5. Different load distributions considered.

Nine different loads described below and shown in Fig.5 were examined. The
plate thickness is divided into three equal parts; on each part the tractions are
uniformly distributed and span over the middle 4.5 mm width of the plate.
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4, Comparison of experimental and computed results

Figure 6 shows the experimental and computed caustic curves for the three
load distributions of group (a) of Fig.5; the top, middle and bottom figures cor-
respond respectively to load distributions 1, 2 and 3. Unless otherwise noted,
the reflective plane is located on the front surface of the plate. The computed
results are obtained by assigning following values to the material parameters:
A= -055x10"¥m?/N, n = 1491, £ = 1.6GPa, v = 0.399. The experi-
mentally obtained caustic curves are not completely symmetric about the center-
line probably because of the slight asymmetry in the externally applied tractions.
However, the experimental and computed curves look similar implying that the
assumptions made in deriving the equation for a caustic curve are reasonable. In
Fig. 7 we have plotted the computed and experimental values of the size of the

1) )

2

Fia. 6. Experimental (1) and computed (2) caustic curves for the three load distributions
of group (a) of Fig.5 with the reflective plane located on the front surface of the plate.
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caustic curves for the load distribution of group (a) versus the maximum trac-
tion; it is clear that the two sets of values agree well with each other. The plot of
the optical path difference computed from Eq. (2.7) shows that there is an affine
relationship between it and the maximum traction.
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FiG. 7. Dependence of the size of the caustic curve and the computed optical path difference
upon the magnitude of the maximum load.

The effect of the location of the maximum traction on the experimental and
computed caustic curves is illustrated in Fig. 8 where the two sets of caustics ob-
tained by applying the maximum traction (= 40) on the front layer, middle layer
and the rear layer (i.e. loading 3 of groups (a), (b) and (c)) are exhibited. It is
clear that the shape of the caustic produced depends strongly upon the location of
the maximum traction. The computed and experimental values of the size of the
caustic curve versus the location of the position of opmax are compared in Fig. 9;
the two sets of values match well with each other. Also shown in Fig.9 is the
dependence of the computed Lnax upon the location of onmax with the reflective
plane located on the rear surface of the specimen. One can conclude from these
results that the location of o,y influences strongly the size of the caustic curve
only when this location is near the reflective plane. Figure 10 depicts the experi-
mental and computed caustic curves under the third loading condition of group
(a) of Fig.5 and with reflective planes located on the front and back surfaces
of the specimen; it is evident that the curves obtained with these two locations
of the reflective plane are dramatically different. However, the experimental and
computed curves coincide well with each other.
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Fic. 8. Experimental and computed caustic curves for different locations ((a) the front layer,
(b) the middle layer and (c) the rear layer) of the maximum load 4.
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F1G. 9. Dependence of the size of the caustic curve upon the location of the maximum traction
for two different positions of the reflective plane.

[1021]



1022 J. Wang, R.C. Batra AnD K. Isogmi

(1) (2)

Fi1G. 10. Experimental and computed caustics for loading 3 (a) of Fig.5 with (a) reflective plane
located on the front surface of the plate, (b) reflective plane located on the rear surface of the
plate.

5. A simple inverse problem

In applications one wishes to determine the externally applied load and/or the
stress distribution from the knowledge of the shape and dimension of the caustics.
However, if the external force pattern is known, its amplitude may be estimated
from the dimensions of the caustic curve. We assume the load distribution a(1) of
Fig. S with the reflective plane located on the front surface of the plate. In Table

Table 1. Comparison of the tractions computed from caustics and the applied tractions.

s Pyt Ppi Py
" 2141 3:1:1 4:1:1
D or Lmax (mm) 7.82 9.22 10.69
Applied traction ¢ MN/m?’ 2.00 2.00 2.00

Computed traction gex MN/m? 2.15 2:15 2.26

Difference % 75 7.5 13.0

1 we have listed the measured [ nax, the traction computed from Eq.(2.23), and
the traction applied in tests. The maximum difference between the computed and
the applied tractions of 13% suggests that the method gives acceptable results.
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Figure 11 shows contours of nondimensional principal stresses oy and o, obtained
from the experimentally observed caustics. Here pest (MN/ m?) is the intensity of
applied tractions estimated from Eq.(2.23) and the size of the caustic curve.
These contours show high gradients of stress near the point where the applied
traction jumps from zero to a finite value.
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FiG. 11. Distribution of nondimensional principal stresses.

6. Conclusions

We have studied some basic characteristics of caustics produced in a homogene-
ous and both optically and mechanically isotropic thin rectangular plate sub-
jected to in-plane loads on two opposite edges, with the other two edges kept
traction-free. The applied load is such that points on the central plane of the plate
do not undergo any lateral displacement. The effects of different distributions of
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the edge loads and the location of the reflective plane upon the caustics produced
has been discussed. Computed shapes of caustics and their sizes have been found
to compare well with those observed experimentally. The pattern of the caustic
curves produced is found to depend strongly upon the location of the reflective
plane; the shapes of caustic curves are quite different when the reflective plane
abuts on the front or rear surface of the plate. The magnitude of the applied
load influences strongly the size of the caustic produced if the reflective plane
is located near the point of application of the peak load. An inverse problem of
determining the applied tractions from the size of the caustic curve has also been
studied.
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