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Analysis of stress distribution in a thin rectangular plate 
by the method of caustics 

1. WANG, R. C. BATRA (I3LACKSI3URG) and K. ISOGIMI (TSU) 

W E DISCUSS some characteristics of caustics in a rectangular plate loaded by distributed in-plane 
loads on a part of two opposite edges with the other two edges kept traction-free. It is assumed that 
plane state of stress prevails in the plate. The theoretical developments are valid for an arbitrary 
location of the reflective plane within the plate. A good agreement is found between the computed 
and observed caustics. A simple inverse problem of determining the intensity of the distributed 
load from the size of caustics is also investigated. 

1. Introduction 

THE METHOD of caustics was first proposed by MANOGG [1] and has been employed 
by THEOCARIS [2, 3] and KALTHOFF [4] to ascertain stresses at singular points. 
The method is widely used in fracture mechanics to determine stress intensity 
factors under Modes I, TI and Ill loading [5]. Here we apply this method to 
another kind of singular problem, namely, distributed load acting on a part of 
the width of a plate; this is a simplified model of loads acting on a cutting tool. 
The deformations and stresses will be singular at points where the distributed 
load jumps from zero to a finite value or vice-versa. Here we consider a thin 
plate subjected to in-plane distributed loads at two opposite edges with the other 
two edges traction-free and assume that a plane stress state prevails in the plate. 
We use the method of caustics to transform the stress singularity to an optical 
singularity and determine the stress distribution a t singular points. It is assumed 
that the intensity of the distributed load is such that the linear e lasticity theory 
can be used to describe deformations of the plate. The work is motivated by 
the desire to ascertain stresses induced in a cutting tool; however no machining 
problem is studied herein. 

2. Analytical developments of caustics 

Referring to Fig. 1, consider parallel rays impinging upon the plane surface 
of a transparent, homogeneous, and both mechanically and opti call y isotropic 
rectangular plate subjected to in-plane distributed loads on two opposite edges. 
The direction of the light reflected from a point on the incident surface will 
depend upon its deformations. This light when projected on a screen, will form 
caustics whose patterns will depend upon the state o f stress at points on the 
incident surface. If the location of the plane from which the incident light is 
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reflected can be varied, then the state of stress at points within the body ea n also 
be ascertained by the method of caustics. 

y 
IP2G 

x' 

Zr ｧｲ｡､ｾｓ＠

Zr 

F IG. 1. A schematic sketch of the problem studied. 

2.1. Optical path difference 

We assume that the distributed load on the edge of a plate can be approxi-
mated by a series of step loads as shown in Fig. 2. Herein we assume the dis-
tributed load to be such that points on the central plane of the plate do not move 
laterally. Also with the plate divided into several layers with thickness of each 
layer equaling the thickness of the edge over which the load intensity is constant, 
we presume that a plane state of stress exists within each layer. Let the plate 
be divided into n layers of thicknesses d1, r/2 • ... , dN and in-plane loads acting 
on their edges equal Pw, P2CJ, . . • , PNcr, respectively. Under the action of these 
loads, the thickness d; and refractive index n; of the i-t h layer (1 ::; i ::; N ) will 
change by dd; and dn;, respectively. We designate by subscripts c and m the 
central surface of the plate and the plane from which li ght is reflected. 

A lateral displacement of a material point in the direction of increasing op-
tical path is taken as positive. Thus under a compressive edge load, the lateral 
displacement of the front surface of the plate is - .dd 1 and that of the rear sur-
face equals + ..1dr. Of course, as assumed above, the lateral displacement of the 
central surface is zero. 

As shown in Fig. 2, we consider a reflective plane located at a distance of kd 
(0 ::; k ::; 1) from the front surface of the plate. Measuring distances from the 
deformed posit ion of the front surface, the optical path .5'1 to the reflective plane 
in the unstressed reference configuration is given by 

(2.1) 
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load along the width direction 

FrG. 2. a) Load distribution along the thickness of the plate; b) load distribution along the width 
of the plate. 

where n is the refractive index of the plate material in the unstressed state and 
the refractive index of air equals 1. After the load is applied, the optical path will 
change to S2 given by 

(2.2) 



http://rcin.org.pl

1014 J. W ANG , R. C. IJATilA AND f-:. [ SOG !Ml 

In writing equation (2.2) we have assumed that the reflective plane (or mirror) 
is located in the m -th layer. Subtracting (2.1) from (2.2) and neglecting terms of 
second o rder in CJ.d and/or L1. n, we obtain the following formula for the optical 
path d ifference 

(2.3) LlS = 2 [ '%';' ( Lln;d; + nLld;) 

+ ( clnm + d:, t1dm) ( kd - '%';'d) - Lld1 l 
The variation in the thickness of the i -th layer subjected to in-plane edge loads 
Pw can be expressed as 

(2.4) 

where E and v equal, respectively, Young's modulus and Poisson's ratio for the 
material of the plate, and a1 and a2 are the principal stresses induced at a point 
in the plate layer subjected to in-plane surface traction a (recall that the third 
principal stress is zero because of the assumptio n of plane stress). Since the 
central plane is assumed not to move laterally, therefore, the displacement CJ.rl f 
of the front surface is given by 

(2.5) 

where it has been assumed that the central plane lies in the c-th layer. Fo r an 
optically isotropic i- th layer, the change in the refractive index at a point is 
given by 

(2.6) 

where A is the optical constant for the p late material. Substitution from (2.4), 
(2.5) and (2.6) into (2.3) results in the followi ng expression for 6.5 : 

(2.7) 

where 
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2.2. Equation of caustics 

Referring to Fig. 1, let R' be the image of I? on a plane screen located at a 
distance Zr from R when there is no load applied to the plate, and R" be the 
image of R when the plate has been deformed by in-plane loads applied at the 

two opposite edges. The vector w = R' R" is given by [6] 

(2.9) 

where we have used (2.7). 
Let the stress state at an arbitrary point in the plate with two opposite edges 

subjected to uniform in-plane tractions a be described by the complex-valued 
function </J(z) of the complex variable z = x + iy. Then 

(2.10) 

where Re ( </;( z)) denotes the real part of </J. In the complex variable notation, 
Eq. (2.9) becomes 

(2.11) 

where (i) denotes the complex conjugate of </;. Assuming that the origin 0 of 
the rectangular Cartesian coordinate system is located on the top surface of the 
undeformed plate and the appli ed tractions are distributed symmetrically about 

it , 0' is its image on the screen and r = 0 n, then 

(2.12) W = 0' R" = w + r. 

However, when the incident light is not a parall el beam but a convergent beam, 
then Eq.(2.12) is modifi ed to 

(2.13) W = w + .Ar, 

where 

(2.14) 

and Z; is the distance of the focal point of the light from the reflective p lane (cf. 
Fig. 3). Of course, for a parallel incident beam, .A = 1. 

In the complex p lane, Eqs. (2.11) and (2.13) yield 

(2.15) 
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lens 

F IG . 3. A schematic sketch of the convergent light beam and illustrations of distances z, and Zr . 

and the condition 

(2.16) J = D(x' , y') = O 
i) (.?:, y) 

for the existence of a singular point becomes 

(2.17) 

Thus the causti c curve is obtained from Eqs. (2.17) and (2.15). 
For the load distribution depicted in Fig. 2, Eq. (2.17) gives 

(2.18) All= 4nrCj >.. , 

where 

A = r 2 + n2
- 2nr cosB, 

(2.19) n = 7'
2 + a2 + 2ar cosB, 

C = 2a X Z,frr, 

(r , B) are the cylindrical polar coordinates of the point (x, y) (e.g. see Fig. 2), and 
2a is the width o f the loaded region. Equation (2.15) describing a caustic curve 
can be written as 

x ' = >.r (cosB - ｾｳ ｩｮ ＲｯＩＮ＠

(
. 1 lo

2
) >. r sm B - - cos 28 - -- . 

2 2 r 2 

(2.20) 

y' = 
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We identify the size of a caustic curve with the maximum horizontal distance, D = 
Lmax, between any two points on the curve. For the load appli ed symmetrically 
about 0, it is reasonable to assume that the caustic curve is symmetrical about 
0'. Thus if points (ro, Bo) and (1·o, - 00) on the caustic curve determine D, then 

(2.21) D = Lmax = bra, 

where 

(2.22) b = 2A (cos 00 - ｾ＠ sin 200) . 

Equations (2.18) and (2.21) give the following relation between the applied uni-
form traction a and the size of a caustic. 

(2.23) 

Knowing D, nonlinear equations (2.18) and (2.21) can he solved iteratively for 
r0 and Bo, and then a can be evaluated from Eq. (2.23). Subsequently, the stress 
distribution at any point in the plate can be ascertained. 

3. Experimental method 

A schematic sketch of the experimental set-up is shown in Fig. 4. All of the 
components depicted in the fi gure, except for the video monitor and recording 
equipment, are mounted on a vibration-isolated table. A laser light from the 

over-ray cutter 

monitor v ideo-tape recorder 

FIG. 4. A layout of the experimental apparatus. 

source is expanded hy the expander, changed into collim ated light by lens 1 and 
into a convergent beam by lens 2. The region of interest with singular stress 
distribution in the object is illuminated with the laser li ght through a half-mirror. 



http://rcin.org.pl

1018 J. W ANG, R. C. IJAT RA AND 1\. I SOGJM J 

Light falling from the object and the half-mirror is received by a CCD camera, 
recorded o n a video-tape and monitored. The dimension ratio >., defined by 
Eq. (2.14), of the convergent light is determined and adjusted by altering the 
positions of lens 2, the half-mirror and the CCD camera. 

The specimen length, width and thickness equal, respectively, 63 mm, 45 mm 
and 6 mm and it is made of transparent acrylate. The reflective surface of the 
specimen is formed by vapor depositing a layer of aluminum film on either the 
front or the rear surface of the plate. 

4cr 
3cr 

2cr 
cr cr cr cr 

(a) 

(I) (2) (3) 

4cr 
3cr 

2cr 

(b) 

(1) (2) (3) 

4cr 
3cr 

2cr 

cr cr cr cr cr 

' (c) 

(1) (2) (3) 

fi G. 5. Different load distributions considered. 

Nine different loads described be low and shown in Fig. 5 were examined. The 
plate thickness is divided into three equal parts; on each part the tractions are 
uniformly distributed and span over the middle 4.5 mm width of the plate. 
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4. Comparison of experimental and computed result s 

1) 

J) 

;;) 

Figure 6 shows the experimental and computed caustic curves for the three 
load distributions of group (a) of Fig. 5; the top, middle and bottom figures cor-
respond respectively to load distributions 1, 2 and 3. Unless otherwise noted, 
the reflective plane is located on the front surface of the plate. The computed 
results are obtained by assigning following values to the material parameters: 
A = -0.55 X w - IB m2 / N, n = 1.491, E = 1.6 GPa, V = 0.399. The experi-
mentally obtained caustic curves are not completely symmetric about the center-
line probably because of the slight asymmetry in the externally applied tractions. 
However, the experimental and computed curves look similar implying that the 
assumptions made in deriving the equation for a caustic curve are reasonable. In 
Fig. 7 we have plotted the computed and experimental values of the size of the 

(1) (2) 

(1) 

(1) (2) 

F IG . 6. Experimental (1) and computed (2) caustic cuJVes for the three load distributions 
of group (a) of Fig. S with the reflective plane located on the front surface of the plate. 
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caustic curves for the load distribution of group (a) versus the maximum trac-
tion; it is clear that the two sets of values agree well with each other. The plot of 
the optical path difference computed from Eq. (2.7) shows that there is an affine 
relationship between it and the maximum traction. 
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FIG. 7. Dependence of the size of the caustic cuiVe and the computed optical path difference 
upon the magnitude of the maximum load. 

The effect of the location of the maximum traction on the experimental and 
computed caustic curves is illu strated in Fig. 8 where the two sets of caustics ob-
tained by applying the maximum traction ( = 4a) on the front layer, middle layer 
and the rear layer (i.e. loading 3 of groups (a), (h) and (c)) are exhibited. It is 
clear that the shape of the caustic produced depends strongly upon the location of 
the maximum traction. The computed and experimental values of the size of the 
caustic curve versus the location of the position of amax are compared in Fig. 9; 
the two sets of values match well with each other. Al so shown in Fig. 9 is the 
dependence of the computed L max upon the location of amax with the reflective 
plane located on the rear surface of the specimen. One can C<?nclude from these 
results that the location of a max inO uences strongly the size of the caustic curve 
only when this location is near the reflective plane. Figure 10 depicts the experi -
mental and computed caustic curves under the third loading condition of group 
(a) of Fig. 5 and with reflective planes located on the front and back surfaces 
of the specimen; it is evident that the curves obtained with these two locations 
of the reflective plane are dramatically difTerent. However, the experimental and 
computed curves coincide well with each other. 
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FIG. 8. Experimental and computed caustic curves for different locations ((a) the front layer, 
(b) the middle layer and (c) the rear layer) of the maximum load 4o-. 
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F IG. 9. Dependence of the size of the caustic curve upon the location of the maximum traction 
for two different positions of the reflective plane. 
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(a) 

(J) 

(b) 

(2) 

FIG. 10. Experimenta l and computed caustics for loading 3 (a) of Fig. 5 with (a) refl ective plane 
located on the front surface of the plate, (b) refl ective plane located on the rear surface o f the 

plate. 

5. A simple inverse problem 

In applications one wishes to determine the externall y appl ied load and/or the 
stress distribution from the knowledge of the shape and dimension of the caustics. 
However, if the external force pattern is known, its amplitude may be esti mated 
from the dimensions o f the causti c curve. We assume the load distributio n a(1) of 
Fig. 5 with the refl ective plane located on the front surface of the plate. In Table 

Table l. Comparison of the tractions computed from causlics and the appli ed tractions. 

· . . pl : p2 : p3 
2:1:1 3:1:1 4:1:1 

D or Lm:u (mm) 7.82 9.22 10.69 

Applied traction u MN/m2 2.00 2.00 2.00 

Computed traction u ... MN/m2 2.15 2.15 2.26 

Di fference % 7.5 7.5 13.0 

1 we have li sted the measured Lmax. the traction computed from E q. (2.23), and 
the traction applied in tests. The maximum difTerence between the computed and 
the applied tractions of 13% suggests that the method gives acceptable results. 
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Figure 11 shows contours of nondimensional principal stresses a 1 and a2 obtained 
from the experimentally obsetved caustics. Here Pest (MN/m2

) is the intensity of 
applied tractions estimated from Eq. (2.23) and the size of the caustic cutve. 
These contours show high gradients of stress near the point where the applied 
traction jumps from zero to a finite value. 
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FIG. 11. Distribution of nondimcnsional principal stresses. 

6. Conclusions 

We have studied some basic characteristics of caustics produced in a homogene-
ous and both optically and mechanically isotropic thin rectangular plate sub-
jected to in-plane loads on two opposite edges, with the other two edges kept 
traction-free. The applied load is such that points on the central plane of the plate 
do not undergo any lateral displacement. The effects of different distributions of 
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the edge loads and the location of the refl ective plane upon the caustics produced 
has been discussed. Computed shapes of caustics and their sizes have been found 
to compare well with those observed experimentall y. The pattern of the caustic 
curves produced is found to depend strongly upon the location of the reflective 
plane; the shapes of caustic curves are quite difTerent when the reflective plane 
abuts on the front or rear surface of the plate. The magnitude of the applied 
load influences strongly the size of the caustic produced if the reflective plane 
is located near the point of application of the peak load. An inverse problem of 
determining the applied tractions from the size of the caustic curve has also been 
studied. 
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